

    
      Navigation

      
        	
          index

        	vagrant-docker-vm 1.0.0 documentation 
 
      

    


    
      
          
            
  
Welcome to Read the Docs

This is an autogenerated index file.

Please create a /home/docs/checkouts/readthedocs.org/user_builds/vagrant-docker-vm/checkouts/1.0.0/index.rst or /home/docs/checkouts/readthedocs.org/user_builds/vagrant-docker-vm/checkouts/1.0.0/README.rst file with your own content.

If you want to use another markup, choose a different builder in your settings.





          

      

      

    


    
         Copyright 2016.
      Created using Sphinx 1.3.5.
    

  

    
      Navigation

      
        	
          index

        	vagrant-docker-vm 1.0.0 documentation 
 
      

    


    
      
          
            

Index



 




          

      

      

    


    
         Copyright 2016.
      Created using Sphinx 1.3.5.
    

  documentation/UPDATE.html


    
      Navigation


      
        		
          index


        		vagrant-docker-vm 1.0.0 documentation »

 
      


    


    
      
          
            
  <– Back to main section



Update


If there are any updates in this repository just run vagrant up --provision or vagrant provision to
update your box with the new ansible changes.






          

      

      

    


    
        © Copyright 2016.
      Created using Sphinx 1.3.5.
    

  

_static/minus.png





_static/comment.png





_static/comment-bright.png





_static/plus.png





_static/ajax-loader.gif





_static/file.png





_static/down-pressed.png





_static/down.png





_images/VagrantVM.png
~/P/docker-dev git:master 33> vagrant ssh
Welcome to Ubuntu 14.84.2 LTS (GNU/Linux 3.16.

30-genaric x86_64)

* Documentation: https://help.ubuntu.con/

= N Y = = N
(00000 SILINS T 17 N V]
[y —ry Yy eyl IRy
I () awyN [y

Development VM :: Ubuntu 14.04.2 LTS

Linux: 3.16.0-30-generic ethd: 192.168.163.172
Docker: Docker version 1.5.0, build aga3lef ethl: 192.168.56.2
CPU: 4 Cores
Memory:  1.44 GiB
6.04 GiB (20% in use)
55.85 GiB (1% in use)

Last login: Fri Mar 20
vagrant@DEV-VM ~ %

35:57 2015 from 172.16.231.1





provision/sshconfig/README.html


    
      Navigation


      
        		
          index


        		vagrant-docker-vm 1.0.0 documentation »

 
      


    


    
      
          
            
  
SSH configuration


The CliTools can build a shared (via git) ssh configuration.
The tools reads the configuration from /vagrant/provision/sshconfig and generate the
/home/vagrant/.ssh/config file.



Configuration files


Default configuration (only one is processed, in this order):



		/home/vagrant/.ssh/config.default (User default host)


		/vagrant/provision/sshconfig/default.conf (Shared default configuration)


		(Internal clitool defaults)





Host configuration files:



		/vagrant/provision/sshconfig/*conf


		/home/vagrant/.ssh/config.user








Automatic rebuilding


With this Vagrant VM CliTools SSH configuration building is automatically processed with
incron. If the user edits /home/vagrant/.ssh/config.default or /home/vagrant/.ssh/config.user
the /home/vagrant/.ssh/config file is automatically recreated.








          

      

      

    


    
        © Copyright 2016.
      Created using Sphinx 1.3.5.
    

  

_static/comment-close.png





README.html


    
      Navigation


      
        		
          index


        		vagrant-docker-vm 1.0.0 documentation »

 
      


    


    
      
          
            
  
Vagrant Docker Development-VM


[image: latest v1.0.0] [https://github.com/mblaschke/vagrant-development/releases/tag/1.0.0]
[image: License MIT]


[image: Vagrant Development VM login]


Support for:



		VitualBox


		VMware (preferred)


		Parallels (preferred)






What is Vagrant?


Vagrant is a tool for automatic creation, configuration, management and provisioning of VMs inside VirtualBox, VMware and Parallels (and others).
It will create and manage all VM network interfaces, shares and settings  (eg. number of cpus, memory...).


Hint: Vagrant doesn’t provides GUI tools, it’s just a CLI tool.





Why Vagrant and not Boot2Docker?


I wanted a customizable development box (with possiblity to use it as sandbox) and i also wanted my favorite
development tools inside my box which are up2date.


Also Vagrant provides a sharing/connection service [http://docs.vagrantup.com/v2/share/] that will make
your Vagrant box public accessible (eg if you want to show a customer the current result of your work).


Only services (apache, nginx, mysql and other) are used inside docker containers.
Working files are stored inside the vm-box (the old way) or outside (the modern way) with shares.


Also this VM should be a sandbox so eg. no email should be send to other servers - they are catched by a
local postfix daemon and can be accessed by IMAP (dovecot).


Following the “keep it simple, stupid” this box provides all tools with a simple “vagrant up”





Table of contents



		Requirements


		Installation


		Usage


		Updating - Keep your box up2ate


		Services


		Using Docker


		Using CliTools


		About Provisioning


		Troubleshooting


		Changelog








Credits


Thanks for support, ideas and issues ...



		Ingo Pfennigstorf [https://github.com/ipf]


		Florian Tatzel [https://github.com/PanadeEdu]


		Achim Fritz [https://twitter.com/achimfritz73]


		Rainer Zeh [https://twitter.com/rzeh]


		Philipp Kitzberger [https://github.com/Kitzberger]





Did I forget anyone? Send me a tweet or create pull request!





TODO



		Reverse Proxy
		distributed perverse proxy configuration via shared folders for easy and fast deployment








		auto update composer and stuff? -> ansible tag?


		Vagrantfile
		private IP-address


		VAGRANT_VM_DATA_SIZE vmware


		https://github.com/BerlinVagrant/vagrant-dns








		move vagrant home to shared folder?


		/etc/host provision


		testing











          

      

      

    


    
        © Copyright 2016.
      Created using Sphinx 1.3.5.
    

  

_static/up.png





CHANGELOG.html


    
      Navigation


      
        		
          index


        		vagrant-docker-vm 1.0.0 documentation »

 
      


    


    
      
          
            
  
Vagrant Development VM Changelog



1.0.0 - 2015-06-17



		Initial Version


		Added Docker


		Added Docker reverse proxy (apache2)


		Added mail sandbox (postfix, dovecot)


		Added dnsmasq (with lookup of Docker containers)


		Added Samba


		Added ntp (chrony)


		Added CliTools [https://github.com/mblaschke/clitools]


		Host support: Windows, Linux and MacOSX hosts


		Virtualization support: VMware, Parallels, VirtualBox











          

      

      

    


    
        © Copyright 2016.
      Created using Sphinx 1.3.5.
    

  

documentation/USAGE.html


    
      Navigation


      
        		
          index


        		vagrant-docker-vm 1.0.0 documentation »

 
      


    


    
      
          
            
  <– Back to main section



Usage



Access to VM


You can get access to this VM with SSH (ssh, rsync, scp) or with SMB (Samba).





Projects storage


This VM has two disks, the main OS disk and a bigger storage disk.
The /home/vagrant/projects/ directory is stored on the bigger storage disk. Here you should put your project files
if you don’t want to use the automatic NFS mounts (eg. for Windows users).


You can get access to /home/vagrant/projects/ though the Samba share projects.





Mounts


The directory of the Vagrantfile is mounted under /vagrant (vagrant default).


Under Linux and MacOS your home directory is mounted under the same path as your host system.
eg.


Host System: /Users/foo/
VM: /Users/foo/


Hint: This handling is needed if you want to use docker-compose from your host system.







Windows specific


If you’re working under Windows you can put your files under /home/vagrant/projects/


You can access these Files via Samba.



		Map a new Network Drive


		Select Drive Letter


		Enter: \\192.168.56.2


		Browse and select the directory projects





Use the following Credentials:


Username: \vagrant
Password: vagrant






          

      

      

    


    
        © Copyright 2016.
      Created using Sphinx 1.3.5.
    

  

search.html


    
      Navigation


      
        		
          index


        		vagrant-docker-vm 1.0.0 documentation »

 
      


    


    
      
          
            
  Search


  
  
  
    Please activate JavaScript to enable the search
    functionality.
  


  

  
    From here you can search these documents. Enter your search
    words into the box below and click "search". Note that the search
    function will automatically search for all of the words. Pages
    containing fewer words won't appear in the result list.
  


  
    
    
    
  

  
  
  
  


          

      

      

    


    
        © Copyright 2016.
      Created using Sphinx 1.3.5.
    

  

documentation/TROUBLESHOOTING.html


    
      Navigation


      
        		
          index


        		vagrant-docker-vm 1.0.0 documentation »

 
      


    


    
      
          
            
  <– Back to main section



Troubleshooting



Startup or update errors



Reprovision the VM


You can safely reprovision your VM:



# if box is NOT started
vagrant up --provision

# if box is already started
vagrant provision









Windows 10 (Tech Preview) and VMWare


It can happen that the Virtual Network Adapters (in this case host only adapter)
break on every shutdown or disconnect from Network.


Windows 10 has currently issues with Virtual Networks on different VM Softwares.
With VMWare a Workaround can be resetting the Network Adapters right before
starting the VM.



		Shut Down the VM (if not down already)


		Open VMWare


		Open in Menu: Edit > Virtual Network Editor...


		Request Admin Rights in this window (if not already started with them)


		Click: Restore Defaults





This will reset all virtual Network Adapters.
If you now start Vagrant with vagrant up, the required Adapters will be
recreated.










          

      

      

    


    
        © Copyright 2016.
      Created using Sphinx 1.3.5.
    

  

TODO.html


    
      Navigation


      
        		
          index


        		vagrant-docker-vm 1.0.0 documentation »

 
      


    


    
      
          
            
  

          

      

      

    


    
        © Copyright 2016.
      Created using Sphinx 1.3.5.
    

  

_static/up-pressed.png





documentation/REQUIREMENTS.html


    
      Navigation


      
        		
          index


        		vagrant-docker-vm 1.0.0 documentation »

 
      


    


    
      
          
            
  <– Back to main section



Requirements



Software



		Vagrant [https://www.vagrantup.com/]


		VirtualBox, VMware Desktop or Fusion, Parallels Desktop


		Vagrant Manager (GUI, optional) [http://vagrantmanager.com/]








System Requirements


Type                  | Minimum                 | Recommendation
——————— | ———————– | ——————–
CPU                   | 2 (eg. Intel Core i5)   | 4 physical Cores (or more, eg. Intel Core i7)
RAM                   | 8 GB                    | 16 GB (or more)
Disk                  | 60 GB free              | 80 GB free

                  |                         |
RAM of VM             | 1.5 GB                  | 2 GB or more


If you want to develop in a fast way make sure to get at least the recommended values.


This VM doesn’t need 16 GB RAM, but you still need your browser, IDE, mail client and other tools.








          

      

      

    


    
        © Copyright 2016.
      Created using Sphinx 1.3.5.
    

  

documentation/DOCKER.html


    
      Navigation


      
        		
          index


        		vagrant-docker-vm 1.0.0 documentation »

 
      


    


    
      
          
            
  <– Back to main section



Docker



Init Docker environemnt


export DOCKER_HOST=tcp://192.168.56.2:2375
export DOCKER_TLS_VERIFY=






You can use docker within your VM and also outside from your VM (if using MacOS).
All shares and port forwardings are preconfigured.



Checkout previous docker instance


git clone git@github.com/path/to/your/installation/
docker-compose up -d






... and start your browser and access the exposed port.


Hint: With this VM you can use docker and docker-compose the same way like boo2docker.







New Projects


Follow the docker-way as defined in the docker manual.
There are already some predefined container from symfony, magento and other projects.


Clone your project layout or just put your files in some directory.


Add docker-compose.yml and add your needed services like (easy example):


web:
  build: .
  command: php -S 0.0.0.0:8000 -t /code
  ports:
    - "8000:8000"
  links:
    - db
  volumes:
    - .:/code
db:
  image: orchardup/mysql
  ports:
    - "3306:3306"
  volumes:
    - /var/log/debug:/var/log/debug
  environment:
    MYSQL_DATABASE: app






For TYPO3, NEOS or FLOW use the TYPO3 Docker Boilerplate [https://github.com/mblaschke/typo3-docker-boilerplate]/


Your existing code will be mounted in your web-container and will be executed with the PHP standalone server utility.
If you want to use Nginx or Apache feel free to use own Dockerfiles or existing Web-Containers. Make sure you mount
your files into the right directory.



Advanced usage


Most of the time you don’t need to access your containers, if you still want to just use:


docker-compose run --rm web bash
docker-compose run --rm db bash














          

      

      

    


    
        © Copyright 2016.
      Created using Sphinx 1.3.5.
    

  

documentation/PROVISION.html


    
      Navigation


      
        		
          index


        		vagrant-docker-vm 1.0.0 documentation »

 
      


    


    
      
          
            
  <– Back to main section



Provision (Ansible)



Introduction


The installation and maintanance of services, tools and files are done with the provisioning tool Ansible.
It will check and correct most of the issues automatically.





Packages



		Repositories
		Default ubuntu + extras + backports


		Percona DB








		Packages
		docker utilts (docker-compose)


		zsh (default shell, grml config)


		development tools (colordiff, jq, ack-grep, sloccount)


		vcs tools (git, git flow, svn, tig)


		filesystem tools (fuse with sshfs)


		server tools (ldaputils, swaks)


		compiler suite (gcc, sass)


		packaging tools (unrar, unace, 7zip, bzip2)


		npm (with grunt, gulp and other tools)


		phars (composer, pack, phpunit)


		general tools (moreutils, incron, byobu, tmux, netcat, cstream)


		analysis tools (htop, atop, iftop, mytop, iotop, pfqueue)


		editors (nano, vim)


		debugging tools (strace)


		CliTools (as “ct”) [https://github.com/mblaschke/clitools]








		Daemons
		dnsmasq


		samba


		zram


		haveged


		postfix and dovecot (user: vagrant, password: vagrant, more informations in README-SERVICES.md.)

















          

      

      

    


    
        © Copyright 2016.
      Created using Sphinx 1.3.5.
    

  

documentation/SERVICES.html


    
      Navigation


      
        		
          index


        		vagrant-docker-vm 1.0.0 documentation »

 
      


    


    
      
          
            
  <– Back to main section



Services



HTTP/Web


Setting               | Value
——————— | ————-
Hostname              | *.vm
Port                  | 80 or 443 (ssl with ssl-proxy, no cert check)





SSH


vagrant ssh

# or

ssh vagrant@192.168.56.2






Setting               | Value
——————— | ————-
Server                | IP or Hostname of VM (192.168.56.2)
Port                  | 22
Username              | vagrant
Password              | vagrant
SSH Key               | Automatically deployed from github, if account name is set (see vm.yml)





Samba (SMB, CIFS)


\\192.168.56.2\code






Setting               | Value
——————— | ————-
Server                | IP or Hostname of VM (192.168.56.2)
User                  | vagrant
Password              | vagrant

                  |
Share /vagrant        | /home/vagrant
Share /code           | /mnt/code/
Share /tmp            | /tmp/


MacOS and Linux don’t need Samba, Vagrant will use shared folders.


For MacOS the /Users directory will be mounted under /Users in Vagrant VM to enable
transparent external docker access.





Mail


IMAP Settings         | Value
——————— | ————-
Server                | IP or Hostname of VM (192.168.56.2)
Port                  | 143 (without ssl)
Username              | vagrant
Password              | vagrant


SMTP Settings         | Value
——————— | ————-
Server                | IP or Hostname of VM (192.168.56.2)
Port                  | 25


Any outgoing email is catched by postfix and send to mailbox of vagrant user.








          

      

      

    


    
        © Copyright 2016.
      Created using Sphinx 1.3.5.
    

  

documentation/CLITOOLS.html


    
      Navigation


      
        		
          index


        		vagrant-docker-vm 1.0.0 documentation »

 
      


    


    
      
          
            
  <– Back to main section



CliTools (ct)



Introduction


CliTools or ct [https://github.com/mblaschke/clitools] is a executable PHP-Phar for more convienence development. It provides some helpfull tools
eg. for Sniffing, Debugging and Docker controlling.





MySQL debugging (live query log and other tools)


If you want to use live query logging you need the ‘/debug’ mount in your mysql container and also an exposed mysql port running on 3306 on the host.


To enable the query log use the provided CliTools:


ct mysql:debug






other debug tools:


ct mysql:connections
ct mysql:list
ct mysql:restore
ct mysql:drop
ct mysql:create
ct mysql:clear












          

      

      

    


    
        © Copyright 2016.
      Created using Sphinx 1.3.5.
    

  

documentation/INSTALL.html


    
      Navigation


      
        		
          index


        		vagrant-docker-vm 1.0.0 documentation »

 
      


    


    
      
          
            
  <– Back to main section



Installation



First startup


# Clone git repository
git clone --recursive --config core.autocrlf=false https://github.com/mblaschke/vagrant-development.git devvm
cd devvm

# Customize the vm.yml with your favorite editor
vim vm.yml

# Setup Docker environment (only linux and mac, only once)
source provision/docker-init.sh

# Start vm
vagrant up

# Enter VM
vagrant ssh






Put this snipped in your .ssh/config:


Host vm vagrant 192.168.56.2
    Hostname 192.168.56.2
    User     vagrant
    ForwardAgent  yes
    Compression   no
    StrictHostKeyChecking no
    UserKnownHostsFile=/dev/null






Now you can (if ssh key is loaded, otherwise use password ‘vagrant’ and ssh-copy-id)


ssh vm











Root privilege requirements for NFS


Under Linux and MacOS you will be asked for root rights (sudo).
If you don’t want to enter your password every time take a look at the vagrant manual for NFS usage [https://docs.vagrantup.com/v2/synced-folders/nfs.html]



VM control


# Start VM
vagrant up

# Suspend VM
vagrant suspend

# Resume VM
vagrant resume

# Stop VM
vagrant halt

# Restart VM
vagrant restart

# Reload Vagrantfile changes (and restart VM)
vagrant reload

# Destroy the VM (and all data!)
vagrant destroy









Vagrant Manager


If you want a GUI tool for managing Vagrant VMs you can use Vagrant Manager [http://vagrantmanager.com/]. With it you can controll your VMs from a system tray icon.








          

      

      

    


    
        © Copyright 2016.
      Created using Sphinx 1.3.5.
    

  

